20211103|数海钓鱼每日一题

20211103|数海钓鱼每日一题

640.png

$22. (本题满分15分)已知函数f(x)=\frac{x^{2}+ax+1}{x-1}\ln{x}, a\in{\mathbb{R}}. $

$(I)求f(x)的极值点个数; $

$(II)若x\geq 1时恒有2f(x)\geq (a+2)(x+1)成立, 求a的取值范围; $

$(III)设a=-2, 若函数y=f(x)-k有两个零点m, n且(m-1)(n-1)<\lambda k^{2}-k恒成立, 求\lambda 的最小值. $


(I)(II) 没导明白


(III)

重量寄的来了, 说实话确实没导明白这题, 如果放考场上2个小时全做这题也大概率被创飞

先换元

$x_{1}=\ln{m}, x_{2}=\ln{n}, x_{1}<x_{2}, h_{1}(x)=x(e^{x}-1), h_{1}(x_{1})=h_{1}(x_{2})=k$

构造函数

$h_{2}(x)=\lambda (x^{2}e^{x}-x^{2})-((\frac{1}{2}x-1)e^{x}+\frac{1}{2}x+1)$

求导

$h_2’(x)=\lambda ((x^{2}+2x)e^{x}-2x)-\frac{1}{2}((x-1)e^{x}+1)$

$h_{2}’’(x)=\lambda ((x^{2}+4x+2)e^{x}-2)-\frac{1}{2}xe^{x}$

$h_{2}’’’(x)=\lambda (x^{2}+6x+6)e^{x}-\frac{1}{2}(x+1)e^{x}$

先证$\lambda <\frac{1}{12}$时不成立

若$\lambda <\frac{1}{12}$

则$h_{2}’’’(0)=6\lambda -\frac{1}{2}<0$

又$h_{2}’’’(x)$为$\mathbb{R}$上连续函数

故存在包含$0$的一个连续开区间$U_{1}$

满足$\forall x\in{U_{1}}$均有$h_{2}’’’(x)<0$

即$h_{2}’’’(x)$在$U_{1}$上恒小于$0$

$h_{2}’’(x)$在$U_{1}$上单调递减

$x\in{(-\infty, 0)\cap U_{1}}$, $h_{2}’’(x)>h_{2}’’(0)=0$, $h_{2}’(x)$单调递增, $h_{2}’(x)<h_2’(0)=0$, $h_{2}$单调递减;

$x\in{U_{1}\cap (0, +\infty)}$, $h_{2}’’(x)<h_{2}’’(0)=0$, $h_{2}’(x)$单调递减, $h_{2}’(x)<h_2’(0)=0$, $h_{2}$单调递减;

因此$h_{2}(x)$在$U_{1}$上单调递减

又$k\to 0^{+}$时$x_{1}\to 0^{-}$, $x_{2}\to 0^{+}$

故存在$k$使得$x_{1}\in{U_{1}}$, $x_{2}\in{U_{1}}$

$x_{1}<x_{2}$

$\Leftrightarrow h_{2}(x_{1})>h_{2}(x_{2})$

$\Leftrightarrow \lambda ({x_{1}}^{2}e^{x_{1}}-{x_{1}}^{2})-((\frac{1}{2}x-1)e^{x_{1}}+\frac{1}{2}x_{1}+1)>\lambda ({x_{2}}^{2}e^{x}-{x_{2}}^{2})-((\frac{1}{2}x_{2}-1)e^{x_{2}}+\frac{1}{2}x_{2}+1)$

$\Leftrightarrow \lambda {x_{1}}^{2}(e^{x_{1}}-1)-(\frac{1}{2}x_{1}(e^{x_{1}}-1)-e^{x_{1}}+x_{1}+1)>\lambda {x_{2}}^{2}(e^{x_{2}}-1)-(\frac{1}{2}x_{2}(e^{x_{2}}-1)-e^{x_{2}}+x_{2}+1)$

$\Leftrightarrow \lambda x_{1}k-x_{1}-\frac{1}{2}k+(e^{x_{1}}-1)>\lambda x_{2}k-x_{2}-\frac{1}{2}k+(e^{x_{2}}-1)$

$\Leftrightarrow \frac{x_{1}}{k}(\lambda k^{2}-k)+\frac{x_{2}}{k}(e^{x_{1}}-1)(e^{x_{2}}-1)>\frac{x_{2}}{k}(\lambda k^{2}-k)+\frac{x_{1}}{k}(e^{x_{1}}-1)(e^{x_{2}}-1)$

$\Leftrightarrow \frac{x_{2}}{k}(e^{x_{1}}-1)(e^{x_{2}}-1)-\frac{x_{1}}{k}(e^{x_{1}}-1)(e^{x_{2}}-1)>\frac{x_{2}}{k}(\lambda k^{2}-k)-\frac{x_{1}}{k}(\lambda k^{2}-k)$

$\Leftrightarrow (\frac{x_{2}}{k}-\frac{x_{1}}{k})(e^{x_{1}}-1)(e^{x_{2}}-1)>(\frac{x_{2}}{k}-\frac{x_{1}}{k})(\lambda k^{2}-k)$

$\Leftrightarrow (e^{x_{1}}-1)(e^{x_{2}}-1)>\lambda k^{2}-k$

与$(m-1)(n-1)<\lambda k^{2}-k恒成立$即$(e^{x_{1}}-1)(e^{x_{2}}-1)<\lambda k^{2}-k恒成立$矛盾

故$\lambda \geq \frac{1}{12}$

再证$\lambda = \frac{1}{12}$时$(e^{x_{1}}-1)(e^{x_{2}}-1)<\lambda k^{2}-k恒成立$

若$\lambda = \frac{1}{12}$

$h_{2}’’’(x)=\frac{1}{12}x^{2}e^{x}\geq 0$, 当且仅当$x=0$时取等

$h_{2}’’(x)$单调递增

$x\in{(-\infty, 0)}$时, $h_{2}’’(x)<h_{2}’’(0)=0$,$h_{2}’(x)$单调递减, $h_{2}’(x)>h_2’(0)=0$, $h_{2}(x)$单调递增;

$x\in{(0, +\infty)}$时, $h_{2}’’(x)>h_{2}’’(0)=0$,$h_{2}’(x)$单调递增, $h_{2}’(x)>h_2’(0)=0$, $h_{2}(x)$单调递增;

故$h_{2}(x)$在$\mathbb{R}$上单调递增

$x_{1}<x_{2}$

$\Leftrightarrow h_{2}(x_{1})<h_{2}(x_{2})$

$\Leftrightarrow \lambda ({x_{1}}^{2}e^{x_{1}}-{x_{1}}^{2})-((\frac{1}{2}x-1)e^{x_{1}}+\frac{1}{2}x_{1}+1)<\lambda ({x_{2}}^{2}e^{x}-{x_{2}}^{2})-((\frac{1}{2}x_{2}-1)e^{x_{2}}+\frac{1}{2}x_{2}+1)$

$\Leftrightarrow \lambda {x_{1}}^{2}(e^{x_{1}}-1)-(\frac{1}{2}x_{1}(e^{x_{1}}-1)-e^{x_{1}}+x_{1}+1)<\lambda {x_{2}}^{2}(e^{x_{2}}-1)-(\frac{1}{2}x_{2}(e^{x_{2}}-1)-e^{x_{2}}+x_{2}+1)$

$\Leftrightarrow \lambda x_{1}k-x_{1}-\frac{1}{2}k+(e^{x_{1}}-1)<\lambda x_{2}k-x_{2}-\frac{1}{2}k+(e^{x_{2}}-1)$

$\Leftrightarrow \frac{x_{1}}{k}(\lambda k^{2}-k)+\frac{x_{2}}{k}(e^{x_{1}}-1)(e^{x_{2}}-1)<\frac{x_{2}}{k}(\lambda k^{2}-k)+\frac{x_{1}}{k}(e^{x_{1}}-1)(e^{x_{2}}-1)$

$\Leftrightarrow \frac{x_{2}}{k}(e^{x_{1}}-1)(e^{x_{2}}-1)-\frac{x_{1}}{k}(e^{x_{1}}-1)(e^{x_{2}}-1)<\frac{x_{2}}{k}(\lambda k^{2}-k)-\frac{x_{1}}{k}(\lambda k^{2}-k)$

$\Leftrightarrow (\frac{x_{2}}{k}-\frac{x_{1}}{k})(e^{x_{1}}-1)(e^{x_{2}}-1)<(\frac{x_{2}}{k}-\frac{x_{1}}{k})(\lambda k^{2}-k)$

$\Leftrightarrow (e^{x_{1}}-1)(e^{x_{2}}-1)<\lambda k^{2}-k$

即$\lambda$最小值为$\frac{1}{12}$


现在我们来处理两个问题, 一小一大

先看小问题

$h_{2}(x)$是如何构造xjb凑出来的

回到$(e^{x_{1}}-1)(e^{x_{2}}-1)<\lambda k^{2}-k$

同乘$(\frac{x_{2}}{k}-\frac{x_{1}}{k})$即$(\frac{1}{e^{x_{2}}-1}-\frac{1}{e^{x_{1}}-1})$制造同构式

得到$\lambda {x_{1}}^{2}(e^{x_{1}}-1)-x_{1}+(e^{x_{1}}-1)<\lambda {x_{2}}^{2}(e^{x_{2}}-1)-x_{2}+(e^{x_{2}}-1)$

令$h_{3}(x)=\lambda x^{2}(e^{x}-1)-x+(e^{x}-1)$

但是我们发现$h_{3}(x)$不是一个$\mathbb{R}$上的单调递增函数, 与我们期望的不同

为什么

$h_{3}’(x)=\lambda ((x^{2}+2x)e^{x}-2x)-(1-e^{x})$

$h_{3}’’(x)=\lambda ((x^{2}+4x+2)e^{x}-2)+e^{x}$

有$h_{3}’’(0)=1>0$

又$h_{3}’’(x)$为$\mathbb{R}$上连续函数

故存在包含$0$的一个连续开区间$U_{2}$

满足$\forall x\in{U_{2}}$均有$h_{3}’’(x)>0$

即$h_{3}’’(x)$在$U_{2}$上恒大于$0$

$h_{3}’(x)$在$U_{2}$上单调递增

$x\in{(-\infty, 0)\cap U_{2}}$, $h_{3}’(x)<h_{2}’’(0)=0$, $h_{3}(x)$单调递减;

$x\in{U_{2}\cap (0, +\infty)}$, $h_{2}’’(x)>h_{2}’’(0)=0$, $h_{3}(x)$单调递增;

又$k\to 0^{+}$时$x_{1}\to 0^{-}$, $x_{2}\to 0^{+}$

故存在$k$使得$x_{1}\in{U_{2}}$, $x_{2}\in{U_{2}}$

因此我们不能只通过$x_{1}<x_{2}$

得出$h_{3}(x_{1})<h_{3}(x_{2})$

那怎么办?

这部分思想有点类似拉格朗日乘数法, 直线系, 曲线系之类的

如果我们构造两个函数$h_{4}(x, y)$, $h_{5}(x)=h_{4}(h_{3}(x), h_{1}(x))$均是关于$x$单调递增的

那么有$h_{5}(x_{1})=h_{4}(h_{3}(x_{1}), h_{1}(x_{1}))<h_{5}(x_{2})=h_{4}(h_{3}(x_{2}), h_{1}(x_{2}))$

不就有$h_{3}(x_{1})<h_{3}(x_{2})$了吗?

实际上一般构造的是$h_{4}(x, y)=x+\mu y$

本题中是依据$\lambda \geq \frac{1}{12}$取的$\mu =-\frac{1}{2}$

具体细节不详细描述, 可参看

【导数】从增强函数透析“极值点偏移”本质(1/2)

现在来看大问题

$\frac{1}{12}$是怎么来的

前置知识: 洛必达法则, 隐函数求导

$(e^{x_{1}}-1)(e^{x_{2}}-1)<\lambda k^{2}-k$

$\Leftrightarrow \frac{(e^{x_{1}}-1)(e^{x_{2}}-1)}{k^{2}}<\frac{\lambda k^{2}-k}{k^{2}}$

$\Leftrightarrow \frac{1}{x_{1}x_{2}}+\frac{1}{k}<\lambda$

$h_{6}(k)=\frac{1}{x_{1}x_{2}}+\frac{1}{k}$

一个直觉是$k\to 0^{+}$时$h_{6}(k)$最大(我也不知道为什么这是对的)

$\lim_{k\to 0^{+}}h_{6}(k)$怎么求?

$h_{7}(x)=\sqrt{h_{1}(x)}=\sqrt{x(e^{x}-1)}$

取根号的原因自己算算就知道, 后面极限最起码不是$0$或$\infty$你就偷着乐吧

$h_{7}’(x)=\frac{(x+1)e^{x}-1}{2 \sqrt{x(e^{x}-1)}}$

$h_{7}’’(x)=\frac{(x^{2}+2x-1)e^{2x}-2(x^{2}+x-1)e^{x}-1}{4(x(e^{x}-1))^{3/2}}$

$h_{7}’’’(x)=\frac{(x^{3}+3x^{2}-3x+3)e^{3x}-(2x^{3}+9x^{2}-6x+9)e^{2x}+(4x^{3}+6x^{2}-3x+9)e^{x} -3}{8(x(e^{x}-1))^{5/2}}$

$h_{7}’’’’(x)=\frac{((x^{4}+4x^{3}-6x^{2}+12x-15)e^{4x}-4(x^{4}+3x^{3}-6x^{2}+9x-15)e^{3x}-(4x^{4}-24x^{3}+30x^{2}-36x+90)e^{2x}-4(2x^{4}+4x^{3}-3x^{2}+3x-15)e^{x}-15)}{16(x(e^{x}-1))^{7/2}}$

$h_{7}(x_{1})=\sqrt{h_{1}(x_{1})}=\sqrt{x_{1}(e^{x_{1}}-1)}=\sqrt{k}=t$

$h_{7}(x_{2})=\sqrt{h_{1}(x_{2})}=\sqrt{x_{2}(e^{x_{2}}-1)}=\sqrt{k}=t$

$h_{8}(t)=\frac{1}{x_{1}x_{2}}+\frac{1}{t^{2}}$

$h_{9}(t)=x_1$

$h_{10}(t)=x_2$

$h_{7}(h_{9}(t))=t$

$h_{7}(h_{10}(t))=t$

对$t$求导得

$h_{9}’(t)h_{7}’(h_{9}(t))=1$

$h_{10}’(t)h_{7}’(h_{10}(t))=1$

$h_{9}’(t)h_{7}’(x_{1})=1$

$h_{10}’(t)h_{7}’(x_{2})=1$

可得

$h_{9}’(t)=\frac{1}{h_{7}’(x_{1})}$

$h_{10}’(t)=\frac{1}{h_{7}’(x_{2})}$

重复对$t$求导可得

$h_{9}’’(t)=-\frac{h_{7}’’(x_{1})}{(h_{7}’(x_{1}))^{3}}$

$h_{10}’’(t)=-\frac{h_{7}’’(x_{2})}{(h_{7}’(x_{2}))^{3}}$

$h_{9}’’’(t)=\frac{3(h_{7}’’(x_{1}))^{2}-h_{7}’’’(x_{1})h_{7}’(x_{1})}{(h_{7}’(x_{1}))^{5}}$

$h_{10}’’’(t)=\frac{3(h_{7}’’(x_{2}))^{2}-h_{7}’’’(x_{2})h_{7}’(x_{2})}{(h_{7}’(x_{2}))^{5}}$

$h_{9}’’’’(t)=\frac{10h_{7}’’’(x_{1})h_{7}’’(x_{1})h_{7}’(x_{1})-h_{7}’’’’(x_{1})(h_{7}’(x_{1}))^{2}-15(h_{7}’’(x_{1}))^{3}}{(h_{7}’(x_{1}))^{7}}$

$h_{10}’’’’(t)=\frac{10h_{7}’’’(x_{2})h_{7}’’(x_{2})h_{7}’(x_{2})-h_{7}’’’’(x_{2})(h_{7}’(x_{2}))^{2}-15(h_{7}’’(x_{2}))^{3}}{(h_{7}’(x_{2}))^{7}}$

$h_{11}(t)=h_{9}(t)h_{10}(t)$

$h_{11}’(t)=h_{9}’(t)h_{10}(t)+h_{9}(t)h_{10}’(t)$

$h_{11}’’(t)=h_{9}’’(t)h_{10}(t)+2h_{9}’(t)h_{10}’(t)+h_{9}(t)h_{10}’’(t)$

$h_{11}’’’(t)=h_{9}’’’(t)h_{10}(t)+3h_{9}’’(t)h_{10}’(t)+3h_{9}’(t)h_{10}’’(t)+h_{9}(t)h_{10}’’’(t)$

$h_{11}’’’’(t)=h_{9}’’’’(t)h_{10}(t)+4h_{9}’’’(t)h_{10}’(t)+6h_{9}’’(t)h_{10}’’(t)+4h_{9}’(t)h_{10}’’’(t)+h_{9}(t)h_{10}’’’’(t)$

$\lim_{x\to 0^{-}}h_{7}’(x)=-1$

$\lim_{x\to 0^{+}}h_{7}’(x)=1$

$\lim_{x\to 0^{-}}h_{7}’’(x)=-\frac{1}{2}$

$\lim_{x\to 0^{+}}h_{7}’’(x)=\frac{1}{2}$

$\lim_{x\to 0^{-}}h_{7}’’’(x)=-\frac{5}{16}$

$\lim_{x\to 0^{+}}h_{7}’’’(x)=\frac{5}{16}$

$\lim_{x\to 0^{-}}h_{7}’’’’(x)=-\frac{3}{16}$

$\lim_{x\to 0^{+}}h_{7}’’’’(x)=\frac{3}{16}$

$\lim_{t\to 0^{+}}h_{9}(t)=0$

$\lim_{t\to 0^{+}}h_{10}(t)=0$

$\lim_{t\to 0^{+}}h_{9}’(t)=-1$

$\lim_{t\to 0^{+}}h_{10}’(t)=1$

$\lim_{t\to 0^{+}}h_{9}’’(t)=-\frac{1}{2}$

$\lim_{t\to 0^{+}}h_{10}’’(t)=-\frac{1}{2}$

$\lim_{t\to 0^{+}}h_{9}’’’(t)=-\frac{7}{16}$

$\lim_{t\to 0^{+}}h_{10}’’’(t)=\frac{7}{16}$

$\lim_{t\to 0^{+}}h_{9}’’’’(t)=-\frac{1}{2}$

$\lim_{t\to 0^{+}}h_{10}’’’’(t)=-\frac{1}{2}$

$\lim_{t\to 0^{+}}h_{11}(t)=0$

$\lim_{t\to 0^{+}}h_{11}’(t)=0$

$\lim_{t\to 0^{+}}h_{11}’’(t)=-2$

$\lim_{t\to 0^{+}}h_{11}’’’(t)=0$

$\lim_{t\to 0^{+}}h_{11}’’’’(t)=-2$

$\lim_{t\to 0^{+}}h_{8}(t)=\frac{1}{h_{11}(t)}+\frac{1}{t^{2}}=\frac{t^{2}+h_{11}(t)}{h_{11}(t)t^{2}}=\frac{2t+h_{11}’(t)}{h_{11}(t)t^{2}+2h_{11}(t)t}=\frac{h_{11}’’(t)+2}{4h_{11}’(t)t+h_{11}’’(t)t^{2}+2h_{11}(t)}=\frac{h_{11}’’’(t)}{6h_{11}’’(t)t+6h_{11}’(t)+h_{11}’’’(t)t^{2}}=\frac{h_{11}’’’’(t)}{12h_{11}’’(t)+8h_{11}’’’(t)t+h_{11}’’’’(t)t^{2}}=\frac{-2}{-24}=\frac{1}{12}$

$Q.E.D$